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The most important result in this paper is that the set K,,(;, ¢,) is not proximinal
in L(I, ¢y). This gives a negative solution to Problem 5.2.1 and a positive solution
to Problem 5.2.4 of Deutsch, Mach, and Saatkamp (J. Approx. Theory 33 (1981),
199-213).  © 1986 Academic Press, Inc.

INTRODUCTION

If A is a closed subset of the normed linear spaceX, then A is said to be
“proximinal” in X if for each x e X, there is y,€ 4 such that

lx—yoll =d(x, 4)=inf{|lx—y|; ye 4}

In this case y, is called a “best approximation” to x from A. If B is a subset
of X then

3(B, A)=sup{d(x, A); xe B},
is the deviation of B from A, and
d,(B, X)=inf{8(B, N); N is an n-dimensional subspace of X},

is the Kolmogrov n-width of B in X.
If X and Y are two normed linear spaces, then L(X, Y) denotes the set of
all bounded linear operators from X to ¥, K(X, Y) the set of all compact

operators in L(X, Y), and K, (X, Y) the set of all operators in L(X, Y) of
rank < n.

* Part of a thesis submitted for the Ph. D. degree at the University of Newcastle Upon
Tyne, written under the supervision of Dr. A. L. Brown.
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The proximinality of K,(X, Y) in L(X, Y) and K(X, Y) has been studied
by several authors. It is known that if Y* is the dual space of Y then
K, (X, Y*) is proximinal in L(X, Y*). The more interesting problem turns
out to be the proximinality of K,(X, Y) in K(X, Y) and L(X, Y} when
Y = Cy(Q), for arbitrary locally compact Hausdorff space Q. Deutsch et al.
[2] proved that, if X* is strictly convex then K, (X, Cy(Q)) is proximinal in
K(X, Co(Q)), and Kamal [4] proved that, if X* is uniformly convex then
K (X, Co(Q)) is proximinal in L(X, Cy(Q)).

This paper contains a further study for the proximinality of
K, (X, Co(Q)) in K(X, Co(Q)) and L(X, Cy(Q)). In Section 1, it is shown
that for each positive integer n = 1, the set K,(/,, ¢;) is not proximinal in
L(l,, ¢o). This gives a negative solution to Problem 5.2.1 of Deutsch et al
[2]. Since by Mach and Ward [5], K({,, ¢o) is proximinai in L{/,, ¢y), it
follows that the solution of Probiem 5.2.4 of Deutch ef al. [2] is positive,
that is there are Banach spaces X and Y such that K (X, Y) is not
proximinal in L(X, Y), whereas K(X, Y) is proximinal in L{X, Y).

The Hausdorff space Q will be said to contain Q, if it contains an infinite
convergent sequence of distinct elements. In Section 2, it is shown that if ¢
contains Q,. then K,(/,, C(Q)) is not proximinal in K(/,, C(Q)). This
shows that generally it is not necessary that K, (X, Y) is proximinal even in
K(X, Y). Brown [1] proved that if Q satisfies a certain condition then there
is a bounded subset 4 in an (n+ 3)-dimensional subspace of C(Q), such
that the n-width of 4, d,(4, C(Q)) is not attained. Although ¢, is not
isometric to any C(Q) for which Q satisfies the given condition, it is shown
that for each positive integer # > 1, there is a bounded subset 4 of ¢, such
that the n-width of 4, d,(4, ¢,) is not attained. Since it is easy to show that
for each relatively compact subset K of ¢, the n-width 4,(K, ¢,) is attained,
it follows that this result cannot be improved in ¢,.

The rest’ of the Introduction will cover some definitions and known
results, that will be used frequently in this paper. If Q is a Hausdorff
topological space, X is a normed linear space and t is a topology defined
on X, then C(Q, (X, 7)) denotes the set of all bounded functions from Q to
X, which are continuous with respect to <. If 7=, then
Co(Q, X)={fe C(Q, (X, |[)); Ve>0 the set {geQ; [ f(g)|>¢e} is com-
pact}. If X = R the set of real numbers, then Cy(Q, R) is denoted by Cy(Q).
If X* is the dual space of X then

ColQ, (X%, 0¥)) = {fe C(Q, (X*, 0*)); % ofe Cy(Q) Vxe X},
where £ is the image of x under the canonical injection of X in X**,

As a special case if Q is the set of all positive integers, then Cy(0Q, X)
consists of all bounded sequences in X that converge to zero, and will be
denoted by cy(X).

The importance of introducing the Banach space Cy(Q, X) can be seen in
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0.1. Lemma. Ler X be a Banach space, Q a locally compact Hausdorff
space, and for each nonnegative integer n, let

C,=) {Co(Q, N); N is an n-dimensional subspace of X *1
N

The set K (X, Co(Q)) is proximinal in L(X, Co(Q)) [resp. K(X, Co(0))] if
and only if, for each fe Co(Q, (X*, w*)) [resp. fe Co(Q, X*)], there is an n-
dimensional subspace Ny of X*, and ge Co(Q, N,) such that

If—gli=d(£, C,).

The proof of this lemma can be obtained from Deutsch et al. [2), and can be
Jound in Kamal [4].

0.2. DermviTioN. Let X be a Banach space, ¢ a locally compact
Hausdorff space, and let C, be as in Lemma 0.1.

(a) For each fe Cy(Q, (X*, 0*)) let a,(f) denotes d(f, C,).
(b) For each Te L(X, Cy(Q)) let a,(T) denotes d(T, K, (X, Co(Q))).

It is obvious from Lemma 0.1 that there is no problem in introducing the
same symbol “g,” in both cases of Definition 0.2, since a,(f) is attained for
each fe Co(Q, (X*, w*)) [resp. fe Cy(Q, X*)], if and only if 4,(T) is
attained for each T'e L(X, Co(Q)) [resp. Te K(X, Co(Q)) 1.

1. K,({,, cq) Is NoT PROXIMINAL IN L(/,, ¢o)

In this section it will be shown that for each positive integer n > 1, the set
K., (1, ¢¢) is not proximinal in L(/,, ¢,). After referring to Lemma 0.1, “tak-
ing Q to be the set of positive integers,” it is enough to construct for each
n> 1, a bounded sequence in /., such that n, »“" 0 and a,({y,}& ) is not
attained. The main steps in the proof are to construct in 5. a finite subset
satisfying a certain condition (Lemma 1.2), the by injecting this set in a cer-
tain way in [, (Lemma 1.3} a bounded sequence {#,}, will be construc-
ted in /,, with the required properties.

1.1. LEMMA. Let n be a fixed positive integer, m=2", A the set of all
0= (01, 6,)€IP with |o;| =1 for i=1,2,..,n and let A=(a,)77L ) be
the matrix in which the rows are the element of A. Let b,,.., b, be the
columns of A, z;=2b, for i=1,2,...,nand y=(1, 1,.., 1) el®. Then

(1) d, ({2, 2,}, I2)=2.
(2) For any number a, with 0<a<?2

d,({z4 sz ay}, I2)=a.
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Proof. (2) Let 4 be the balanced convex hull of {z},.., z}, a7}, and let
F,(A) be the boundary of 4. By Brown [1] d,(4, [;7) =inf{|x|j; xe F,(4)},
thus d,(4, [T} <a. Second, let x=3"_, a;zi+«, . ,ay€ F,(4), by the con-
struction of the z}, s, and y

Il = " 3

. n
O‘iz;+°‘n+la"/ii =2 Z ot +a o, .y |
i1

i=1
a1
=2 ) lul+(a—2) o, ]

i—~1
:2+ (a"pz) |an~~) 1|
22(1—lan~?ll)+a|an§‘1|
>min{2,a}=a |
In Lemma 12, for x and y in [® and a4,b in R, Iet

(ax, by)=(axy, Xy, GX,ys Y1, BYgse, by, )€1 x[2 =[5 . Conversely if
Z=(Z 150 Zoy) €15, let;

Py -0
P(z)= (215 Z,m)
and
Py g, -1z,
Py(2) = (2o 1 5es Zom )-

Clearly if F is an n-dimensional subspace of /52, then P (F) and P,(F) arc

subspaces of /%%, each of dimension less than or equal to n.

1.2. LemMA. Let z\,.,z,,%, n and m be as in Lemma 1.1. Let
Zi=(z;, z)els,, = (0,7, 027) and W=7, oy), where {1, Y5, 0y, 05}
satisfies the following conditions.

(1) 0,=2and y,>1.
(2) 029, <0, [y,|>10,] and 1y, |+ 10,1 > 2.

Let F be an (n+ 1) dimensional subspace of I, such that

2m
62, 25,., Z,, @, ¥}, F)< 1.
If BeFand | ¥ — Bl <1 then |fli = 1.

Proof. Let {xy,, X, %, B} < F be so that |Z,— X, <lfori=1,2,.,n,
|@—«f <1and [¥- B <1, and let M be the subspace of F generated by
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{Xysus X,}. By Lemma 1.1 dim M =n, so there are two real numbers a,
and a, such that |a,|+|a,| =1 and a,0¢+a,f e M. By Lemma 1.1(2) for
i=1,2, '
10:a, + ;05| <d((0;a; +;a,) 9, P(M))
< 0:a; +W;a5) y — Pfaso+ a, )]

<lag| [PA@)— Pa)ll + |az| [PLY)— PAB)I
<lagl+a,|
=1.

Since 0, =2 and ;> 1, the case i=1 gives a,a, <0, and since ¥,6, <0,
the case i=2 gives the inequality |8, |a,|+ ¥, la|<1, so
(1021~ 192 1) la | + 2] <1, but jy,| > 16,]] so

Yol =1 _ [Yal = (2| +16,1)/2) 1
W2l — 16,1~ 2] —16,] 2

la,| =

Therefore, |a,| > |a,|. Also by Lemma 1.1

2=0,<d(0y P (M)< H Bly-Pl(il_a_:_ﬂ@”
1
<IPA@) =P+ | | 1A
<1+ 2] g
a4,

So |BII= (0, — 1) layjay| = 1. |
In Lemma 1.3 /, will be considered as [[°, /52, where m = 2", that is,

(V1> YooY ETTR I, means that y, e/,

1.3. LemMmA. Let Z,,..,Z,,v, and m be as in Lemma 1.2, and for each
positive integer k=1 let;

—(k—1
o= (2. =57 ez,

and

k+1 k+1
'I’k=(Ty,Ty)el§;’n.
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Define the sequence {n;}* T1Z 15, as follows:
n=(Z,2Z,Z,.) fori=1,2,.,n,
nn-i—l = (¢17 ¢29 @3,"-):

and

foer=(0,0,..0, ¥,0,0,.) fork=2,3,.

(k -- 1)times

Then;

(1) '71'_’(»* ’
2) a,({nf2)=1,
(3) a,. . ({n:},) is not attained.

Proof. (1) It is clear that 5, »“7 0.

(2) For each positive integer k= 1, let y, = (y, (1/k) y)e 5, and define

2m
V=1, V2, V3 ) €L T2 55, Let Ny be the (n+ 1)-dimensional subspace
of [T, /%, generated by {#,,.., 1, y}. It will be shown that d({#,;} |,
co(No)) < 1. Let >0 be given, and let i, be a positive integer more than

1/e. Define the sequence {t,}= | in N, as follows:

n; fori=1,2,.,n
=y fori=n+1,n+2,.,10,

13

0 fori>i,.
Obviously 1, — 0, that is {1;}7 € ¢y(Ny), and

I!{’I,}fo- 1 {TI}IT = sup {n;—1; | =sup |y, — 1,

=sup{{limi—ylsi=n+ L., i} o {lnl;i>i}}

<1 +s

Since ¢ is arbitrary then a,, , ({#,}2 ) <d({n;}2, co(No}) < 1.

(3) Let N be an (n+ 1)-dimensional subspace of T[* /%, and
assume that d({n,}2,, ¢o(N))<1. It will be shown that if there is a
sequence {7} , in N such that [[{#,}2,— {z;}= II<1, the 7,4 0. For



152 AREF KAMAL

x=(xg, Xy, el 12, let P 12,102,105, Pdx)=x,k=1,2,..
Then for k> 1

P(n))=2,; fori=1,2,.,n,
Pk(nn+ 1) = djky
and Py n)=¥.

S0 8({Z,, Zy,r Z,, Dy, Vi), PL{N)) < 1. Since &, and ¥, satisfy the con-
ditions of Lemma 1.2, then |7, = || Px(z:)]| = 1. To 1, b 0.

14. Note. For the case n=1, there is an easy example. Let
x=02,1,1,1,.)¢el,,

1 i
X, = (0, 0...., 0, £+_—, T : , 0, 0,...) fori=2,3,..
i i+1

(i — 1)times

Then x, -»©* 0, and if N, is the 1-dimensional subspace of /,, generated by
the element y,=(1, 1, 1,...,), then

a({x;}2)<d({x}2,, co(No)) < 1.

Furthermore if yel_, and N is the 1-dimensional subspace generated by y,
one can show that if ||x,—a,;y| <1, i=1, 2,.., then a; b 0.

1.5. THEOREM. For any positive integer n= 1, the set K,(I,, cy) is not
proximinal in L(l, c,).

Proof. By Lemma 0.1, (taking Q to be the set of positive integer),
K,(1}, ¢o) is proximinal in L(/,, ¢,), iff for each bounded sequence {x;}:>,
in [, with x, »“" 0, there is an n-dimensional subspace N of /_, and a
sequence {t,} ; in ¢o(N), such that a,({x,} )=I{x;}2,—{r;}2,l. By
Lemma 1.3 and note 1.4 this is not true. |

Theorem 1.5 gives a negative solution for the Problem 5.2.1 in Deutsch
et al. [2], and since by Mach and Ward [57, the set K(/,, ¢,) is proximinal
in L(I;, ¢y), it gives a positive solution for the Problem 5.2.4 in the same
paper.

2. K,(l;, C(Q)) Is Not ProxmMiNAL IN K(/;, C(Q)) IF 0 CoNTAINS O,

In this section it will be shown that if Q is a compact Hausdorff space Q
that contains Q,, then for each positive integer n> 1, the set K,(/;, C(Q))
is not proximinal in K(I,, C(Q)). It will be shown also that for each
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positive integer n > 1, there is a bounded subset 4 of ¢, such that the »-
width of 4, d,(A4, ¢,) is not attained.
The proof of the following lemma can be found in Feder [3]:

2.1. LeMmA. Let T: 1, — E be a bounded linear operator from I, into any
Banach space E, and let B, be the closed unit ball of ,. Then

(1) an(T):dn(T(Bll)7 E)
(2) a(T)is atrained iff d (T(B,, E) is attained.

2.2. COoROLLARY. Let E be a Banach space and let n be any non-negative
integer. Then the set K, (l,, E) is proximinal in L(l,, E) [resp. K(I,, E}] iff
d (A, E) is attained for any countable bounded [resp. relatively compact]
subset A of E

Proof. 1f A={x, x,,..} ©E then let T:/;, —» E be the linear operator
defined by T(e,)=x,, i=1,2,.., where {e;}, is the standard basis in /,.
Clearly T is bounded [resp. compact] if 4 is bounded [resp. relatively
compact ], thus the result follows from Lemma 2.1.

2.3. DeFINITION. Let Q be a locally compact Hausdorff space, Q will be
said to “contain Q,” if it contains a subset that is homeomorphic to the
one point compactification of the set of positive integers; that is to say if it
contains an infinite convergent sequence of distinct clements. It is obvious
that if Q does not contain Q,, then every subset Y of ¢ does not contain
0,. If, in the Hausdorff space Q, there is a nonisolated element b, that has
a countable basis of neighborhoods, then Q contains Q,. Thus every first
coubtable nondiscrete Hausdorff space contains Q. Furthermore, there are
separable compact inflinite Hausdorff spaces, that do not contain Q.
Indeed if SN is the Stone-Cech compactification of the set of positive
integers, then cvery subspace of SN does not contain Q.

2.4. PropoSITION. Brown [17]; If Q is a compact Hausdorff space such
that there is the C(Q) satisfying;

{geQ; h(q) <0} n{ge Q;h(g)>0} #4,

then for any positive integer n > 1, there is a bounded subset A of C(Q) lying
in a (n+ 3)-dimensional subpace of C(Q), such that d, (A, C(Q)) is not
attained.
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2.5. LEMMA. Let Q be a compact Hausdorff space that contains Q.
There is a continuous function he C(Q) satisfying;

{ge 0 h(q)<0}n{qeQ; h(q)>0}#¢

Proof. Let b, — by be an infinite convergent sequence in Q, such that
b;#b; when i+ ). Define f: {b,} ., U {by} = R by

1
Z if k1seven,
1 e -
flb)= % if kis odd,
0 if k=0.

Then f is continuous. Since @ is compact Hausdorff space and
{b}. u{be} is a closed subset of O, then by Tietze extension Theorem,
there is a continuous function he C(Q) such that k| e |y =S It is
obvious that bye {ge Q; h(q)<0} N {geOQ; h(q)>0}.

2.6. COROLLARY. If Q is a compact Hausdorff space that contains Q,
then for each positive integer n= 1, the set K,(I,, C(Q) is not proximinal in

K(l;, C(Q)).

Proof. By Proposition 2.4 and Lemma 2.5, for each n>1, there is a
bounded set 4 of C(Q), such that A lies in an (n + 3)-dimensional subspace
of C(Q) and d,(4, C(Q)) is not attained. Since 4 lies in a finite dimensional
subspace of C(Q), it follows that A is relatively compact and separable, so
the result follows from Corollary 2.2.

2.7. COROLLARY. For any positive integer n > 1, there is a bounded sub-
set A of ¢q such that d (A, cy) is not attained.

Proof. Follows from Theorem 1.5 and Corollary 2.2.

2.8. COoROLLARY. For any relatively compact subset A of ¢, and any non-
negative integer n 20, the n-width d (A, c,) is attained.

Proof. By Deutsch et al. [2], the set K,(I;,cy) is proximinal in
K{(!,, ¢g), thus by Corollary 2.2 for any relatively compact subset 4 of ¢,
and any non-negative integer n >0 the n-width d,(4, ¢,) is attained. J

Corollary 2.6 is the first example in which the set K, (X, Y) is not
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proximinal in K(X, Y). Corollary 2.7 cannot be obtained from Proposition
2.4, because ¢, is not isometric to any C(Q), for which Q satisfies the con-
dition of the proposition, indeed Corollary 2.8 shows that the proposition
is not true if C(Q)=c,.
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